\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [1192]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 195 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {4 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {(5 A-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 A \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac {(5 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

4*A*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d-1/3*(5*A-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(1+cos(d*x+c))-1/3*(A+C)*s
in(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^2-4*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(
sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d-1/3*(5*A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4306, 3121, 3057, 2827, 2716, 2719, 2720} \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {(5 A-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}-\frac {(5 A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {4 A \sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {4 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/(a + a*Cos[c + d*x])^2,x]

[Out]

(-4*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) - ((5*A - C)*Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (4*A*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d) - ((5
*A - C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*
x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx \\ & = -\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a (7 A+C)-\frac {3}{2} a (A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))} \, dx}{3 a^2} \\ & = -\frac {(5 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {6 a^2 A-\frac {1}{2} a^2 (5 A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{3 a^4} \\ & = -\frac {(5 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left (2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{a^2}-\frac {\left ((5 A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2} \\ & = -\frac {(5 A-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 A \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac {(5 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {\left (2 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{a^2} \\ & = -\frac {4 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {(5 A-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 A \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}-\frac {(5 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.63 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.41 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {e^{-2 i (c+d x)} \left (1+e^{i (c+d x)}\right ) \left (-\left ((5 A-C) \left (1+e^{i (c+d x)}\right )^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right )+i \left (-5 A+C-19 A e^{i (c+d x)}-C e^{i (c+d x)}-29 A e^{2 i (c+d x)}+C e^{2 i (c+d x)}-31 A e^{3 i (c+d x)}-C e^{3 i (c+d x)}-12 A e^{4 i (c+d x)}+4 A e^{i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )\right ) \sqrt {\sec (c+d x)}}{12 a^2 d (1+\cos (c+d x))^2} \]

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/(a + a*Cos[c + d*x])^2,x]

[Out]

((1 + E^(I*(c + d*x)))*(-((5*A - C)*(1 + E^(I*(c + d*x)))^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]) + I*
(-5*A + C - 19*A*E^(I*(c + d*x)) - C*E^(I*(c + d*x)) - 29*A*E^((2*I)*(c + d*x)) + C*E^((2*I)*(c + d*x)) - 31*A
*E^((3*I)*(c + d*x)) - C*E^((3*I)*(c + d*x)) - 12*A*E^((4*I)*(c + d*x)) + 4*A*E^(I*(c + d*x))*(1 + E^(I*(c + d
*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))*Sqrt[Sec[c + d*
x]])/(12*a^2*d*E^((2*I)*(c + d*x))*(1 + Cos[c + d*x])^2)

Maple [A] (verified)

Time = 2.09 (sec) , antiderivative size = 452, normalized size of antiderivative = 2.32

method result size
default \(-\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (5 A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (5 A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-48 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (43 A +C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (37 A +C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(452\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/6*(2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF
(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c)
,2^(1/2))-12*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*
c)-48*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+2*(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*(43*A+C)*sin(1/2*d*x+1/2*c)^4-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*
(37*A+C)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/s
in(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.68 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {{\left (\sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, {\left (i \, \sqrt {2} A \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} A \cos \left (d x + c\right ) + i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, {\left (-i \, \sqrt {2} A \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} A \cos \left (d x + c\right ) - i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (12 \, A \cos \left (d x + c\right )^{2} + {\left (19 \, A + C\right )} \cos \left (d x + c\right ) + 6 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(5*I*A - I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-5*I*A + I*C)*cos(d*x + c) + sqrt(2)*(5*I*A - I*C))*we
ierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-5*I*A + I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(
5*I*A - I*C)*cos(d*x + c) + sqrt(2)*(-5*I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))
- 12*(I*sqrt(2)*A*cos(d*x + c)^2 + 2*I*sqrt(2)*A*cos(d*x + c) + I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstras
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 12*(-I*sqrt(2)*A*cos(d*x + c)^2 - 2*I*sqrt(2)*A*cos(d*x + c
) - I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(12*A*c
os(d*x + c)^2 + (19*A + C)*cos(d*x + c) + 6*A)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*
d*cos(d*x + c) + a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^2,x)

[Out]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^2, x)